
ICICTE 2013 Proceedings

	

407	

WEB-BASED SIMULATION OF AN ENGINEERING IN-
STRUCTIONAL LABORATORY

 Constantinos Iliopoulos
University of the West of Scotland

United Kingdom

Anastasios Oikonomidis
Technological Education Institute of Piraeus

Greece

Abstract
The emergence of several kinds of electronic media and devices that connect
to the Internet has created the opportunity for a wide variety of educators to
provide different types of educational materials to their students/learners. It is
still a considerable challenge to set up comprehensive, online engineering in-
structional laboratories to teach students online about the use of scientific in-
struments or processes linked with scientific experiments. Efforts for develop-
ing simulation applications that are meant to be delivered through websites
have faced the inherent limitations of technologies like Adobe Flash and/or the
requirement for the use of high cost development tools. The development of
an online simulation system to facilitate learning of modern electronics is
showcased and critically discussed. A case is made for the integration of Web
2.0 social computing elements and gamification principles in the developed
online simulation system to enhance it further as a learning environment.

Online Simulation Systems in Engineering Laboratories
Engineering laboratories exist to offer students the opportunity to experience
how theoretical concepts apply in the real world often by combining several
processes commonly known as experiments. Through these experiments stu-
dents often try to verify that what they have learnt in theory in terms of math-
ematical formulae, etc., can be applied in real life. In this way, students ac-
quire practical skills like how to operate instruments and how to use devices
and their accessories appropriately and safely, as well as experience how sev-
eral substances change properties under different conditions (e.g., temperature,
pressure), and many others. A key goal of every educational institution for
engineers is to equip graduate engineers with the necessary skills both in theo-
ry and practice. Practice often takes place through labs equipped adequately
to serve the educational needs of every learner. This means that there must be
enough instruments, materials, working stations and staff in order for students
to perform experiments, lab tests, practical exercises and so on effectively, and
to develop practical skills. One small, physical instrument per twenty students

ICICTE 2013 Proceedings

	

408	

is likely not enough for all of them, particularly if it is really necessary to learn
how it works.
This necessity forces institutions to spend sizeable budgets in an effort to offer
their students education of high standards. Since the cost is often substantial
even for high profile universities, efforts have been undertaken for its reduc-
tion through the use of simulation software. This kind of software is produced
for both educational and research reasons and offers its users the opportunity
to conduct experiments in their computers. Prominent examples of this cate-
gory of software include MatLab® and Simulink® of MathWorks Corpora-
tion, covering a wide range of fields from mathematics to control systems and
signal processing, LabVIEW® of National Instruments Corporation, covers
fields like control systems and electronic circuits design and many more. The-
se are the result of many years of research, with large groups of people who
have worked hard for their initial development and still working for their
maintenance and evolution. Unfortunately, such software products command
high prices despite the fact that they can be acquired off the shelf. Using sim-
ulation software offered by the open source community solves the issue of
cost. One major player in this field is Scilab of Scilab Enterprises offering
versions for education suitable for teaching mathematics and engineering sci-
ences at no cost.

All products mentioned above (as well as many others that also exist in the
field of scientific simulations) are installed on individual computers, which
means everyone involved (educators and learners) is asked to install a copy on
their own computers. Educators teach learners about experiments and how
they are conducted via software and learners work on them in order to produce
several projects. Although such software often produces excellent results in
the form of graphs, plots or log files there is one substantial drawback: stu-
dents watch experimental procedures happening in computer monitors and
they use graphical symbols to represent elements and instruments that look
different from the real ones. A plain symbol of an oscilloscope usually found
in simulation systems is nothing like a real oscilloscope where a number of
knobs, potentiometers and buttons are required for its proper use. In the real
world, only those students who will become researchers may be asked to use
only simulation software and not the real thing. Those who will work on real
world applications need hands-on experience and today’s simulation software
cannot provide it to them. Besides this drawback, it is not possible for educa-
tors to know how much time each student/learner spends on every project
when working at home. Engineers are usually asked to work under pressure
and tight deadlines, and engineering students need to learn how to adopt a cul-
ture of working effectively under a variety of time constraints. By using tradi-
tional, offline simulation software, students who perform experiments at min-
imum time may end up getting the same credit as other students in the same
class who did the same job in double time. Traditional, offline simulation
software does not seem to offer a consistent way of differentiating between the
two types of student/learner in the previous example.

So, our proposal is to move from offline to online simulation software. In
such environments both learners and educators will only need to have a web

ICICTE 2013 Proceedings

	

409	

browser and Internet connection. By adopting web technologies like JavaS-
cript, PHP and HTML5 it is possible to skip the need to install plug ins to
learners’ browsers, and if the online simulation system is cross browser they
can use the very same browser they are using for other online activities such as
accessing their favorite social media websites. Of course, the use of such an
online system can be charged the same way it is done for an offline one.
Online systems are much more likely to be implemented by open source
groups, academics or even other students who can share their work for free as
it has been happening widely over the Internet in the last decade. Contributors
can offer their parts to bigger projects and in this way it is possible to combine
different modules implemented by different people. For example, one piece of
simulation software for electronics can be produced by two groups of devel-
opers. One group could design and implement the various needed instruments
and the second group could develop the electronic elements or components.
Both instruments and elements could be re-used in other projects saving in this
way a lot of effort. Parameters like the time of system use by each student can
be easily added and passed to educators as feedback. Simply, learners/ stu-
dents will log on through their unique user name and passwords so each time it
will be recorded who is using the system, how much time is spent on specific
learning activities and so on.

A key question with online simulation systems is how to provide comprehen-
sive and convincing hands-on experiences to learners. In the following sec-
tions we will attempt to demonstrate how these needs could be addressed by
using vector graphics, real instruments and elements/components as guides in
order to produce their digital replicas.

JavaScript Web 2.0 Tools
In the early days of the Web, developers and users usually called everything
that could be found online as “Web sites” or “Web pages”. That was normal
because most of the content was static, like plain text, images and maybe some
video. During the late ‘90s when e-shops started to bloom, many people real-
ized that the Web could be much more than static. While the e-shop business
was getting more and more mature and social media was introduced in the mid
‘00s, the use of the Web itself was changing. This evolution is called Web
2.0. Several developments happened as part of this new Web 2.0 paradigm.
For instance, the client side programming language JavaScript acquired a sig-
nificant part in this new Web. Developers don’t need any more to write code
about everything like events or style change from scratch. Several JavaScript
libraries appear online that do the job well, and programmers only have to load
them through the HTML pages they create. Nowadays, the Web is inundated
with such libraries and before anyone starts building anything online they’d
better check first if a particular tool exists that already does what they want to
accomplish. Fortunately, many of these libraries are free of charge, often
available through open source communities, independent groups and individu-
als, even large corporations like Google and FaceBook. These libraries are
categorized in different types such as Document Object Model (DOM) manip-
ulation, Graphical User Interface (GUI), Visualization and more (List of
JavaScript libraries, 2013). The large variety of fields that these JavaScript

ICICTE 2013 Proceedings

	

410	

libraries apply to, forced major Web players like Adobe’s Flash to be left be-
hind by many developers. Especially in the field of vector graphics on the
Web, where a few years ago Flash was the unquestionably dominant force,
many alternatives now have emerged. With the introduction of HTML5 and
its feature of Canvas where vector graphics are embedded within the markup
code, Flash (which is actually a third party plug-in for browsers) faces a seri-
ous competitor. The problem is that Flash is not a World Wide Web Consor-
tium (W3C) recommendation and most likely it will never become one. The
lack of browser native support for Flash, the growth of smart phones and tab-
lets where there is even more limited and in some cases no Flash support at all
has turned developers to lighter and most important cross-browser and plat-
form solutions.

One of these solutions is the Raphaël Library (Baranovskiy, n.d. b) and has
been developed by Dmitry Baranovskiy (Baranovskiy, n.d. a) a Sydney-
Australia-based Web developer who is employed by Adobe. In the following
section we are going to demonstrate some of the key principles for developing
a rich graphic virtual world, comprising engineering instruments and elements,
using Web 2.0 tools like Raphaël.

Building an Online Simulation System
The idea of building an online simulation system offering to students a level of
experience that is close to the real thing begins with considering how the vari-
ous parts of the system are depicted on screen. A simple square box tagged as
“Oscilloscope” is far detached from the real oscilloscope device found in real
laboratories. Expensive pieces of offline simulation software come with
tagged plain boxes through which results of simulation processes are present-
ed. But any engineer trained to draw mechanical or electrical drafts can create
a digital replica having a very close resemblance with the real instrument, and
at no cost. All that is required is time, proper guidance and a simple flat bed
scanner as those found in any office nowadays. The first step involves placing
real instruments on a scanner glass and creating high-resolution bitmap images
of them at 1:1 scale. Of course, there are many instruments bigger than avail-
able scanners, but they can be scanned partially and be combined later in a
single image, by using one of many image processing tools available online.
In the following picture the result of a real oscilloscope scanned partially and
combined later is depicted.

Figure 1. Bitmap image of a real oscilloscope

This image is used as a prototype for the creation of a vector graphics image
that will look as close to it as possible. There are some commercial tools for

ICICTE 2013 Proceedings

	

411	

this task like Adobe Illustrator or Corel Draw. Fortunately, there is also an
open source tool named Inkscape, which can do the same job. In either tool
the scanned image will need to be imported in a new blank file. Before start-
ing the drawing process, it should be determined which parts of the instrument
will be movable at the final stage. In the above oscilloscope users should be
able to rotate knobs determining VOLTS per DIVISION on the vertical screen
axis and SECONDS per DIVISION for the horizontal axis. Also the POSI-
TION potentiometers could be rotated so as to move traces on screen up, down
or left, right. Anyone trying to build such a system will need to decide from
the beginning which parts will be movable or not. The reason for this is be-
cause each such part should be assigned a unique identification, which will be
used later in programming tasks. Through this identification, user interaction
events can be attached to different parts. Inkscape comes with a full set of
drawing tools creating Bezier paths around any object. After paths have been
created by following the lines of the prototype image, they can be filled with
the same colors as they were in the prototype by picking color samples for
each part. The following picture exhibits the result of the above process.

Figure 2. Vector Graphics image of the real oscilloscope.

By comparing Figures 1 and 2 we can easily conclude that resemblance be-
tween the real oscilloscope and its replica is very high.

The next stage involves the creation of a Scalable Vector Graphics (SVG) type
file. SVG is “an XML-based vector image format for two-dimensional
graphics that has support for interactivity and animation. The SVG specifica-
tion is an open standard developed by the World Wide Web Consortium
(W3C) since 1999 (Scalable Vector Graphics, 2013). The reason for doing
this is for creating JavaScript code that will not only reproduce our replica in
Web browsers, but it will also allow us to attach interactivity attributes to it,
through the use of the Raphaël library. For the needs of our project a piece of
PHP code was created to convert SVG to Raphaël code. For example, a plain
circle in SVG is declared as follows: <circle cx="100" cy="50" r="40"
stroke="black" stroke-width="2" fill="red"/> where cx and cy hold the coor-
dinates of circle center, r the circle radius and stroke, stroke-width and fill the
circle’s attributes. The same circle in Raphaël could be described as: var c =
paper.circle(100, 50, 40).attr({“stroke”: “black”, “stroke-width”: 2, “fill”:
“red”}) where paper is the main Raphaël object. Although interactivity could
be applied directly on SVG code through its DOM, it is preferred to use

ICICTE 2013 Proceedings

	

412	

Raphaël because it offers cross browser support (not all browsers offer native
SVG support) and most importantly it also offers much more simplicity. If
only SVG is used and two oscilloscopes are needed to be on the same screen,
then they should be both designed with the same level of detail. With Raphaël
only one would need to be created through a JavaScript constructor and repro-
duced as many times as browser memory allows. Events for handling interac-
tivity can be embedded within the constructor itself and therefore serve every
oscilloscope object in the same way. This approach helps us to keep the code
minimal and consistent.

After completing every part’s behavior, such as events requiring rotation,
change of color, repositioning, and so on, the next step involves implementing
an algorithm that will make the simulation system not just look like the real
one but work the same way, too.

Modified Nodal Analysis Algorithm and Gauss-Jordan Elimination
According to Eric Cheever (n.d.) professor of electrical engineering at
Swarthmore College USA,

Though the node voltage method and loop current method are the most
widely taught, another powerful method is modified nodal analysis
(MNA). MNA often results in larger systems of equations than the
other methods, but is easier to implement algorithmically on a com-
puter, which is a substantial advantage for automated solution. To
use modified nodal analysis you write one equation for each node not
attached to a voltage source (as in standard nodal analysis), and you
augment these equations with an equation for each voltage source.
(Cheever, n.d.)

By combining digital vector graphics replicas of electrical measuring instru-
ments and elements / components with Modified Nodal Analysis (MNA) it is
possible to implement a system simulating the operation of electrical and elec-
tronics circuits in a way which is very close to reality. MNA applies to cir-
cuits with passive (resistors), reactive (capacitors, inductors) elements and op-
erational amplifiers. In a circuit with n nodes (excluding grounds) and m in-
dependent voltage sources MNA results in a matrix equation of the form Ax =
z, where the A matrix is (n+m)x(n+m) in size, and consists only of known
quantities, the x matrix is an (n+m)x1 vector that holds the unknown quantities
(node voltages and the currents through the independent voltage sources) and
the z matrix is an (n+m)x1 vector that holds only known quantities. To solve
the circuit, a matrix manipulation of the form x=A-1z is needed. So the goal is
to assign attributes to our graphics in order the system to distinguish them as
resistors, capacitors, voltage sources, etc and construct the three matrixes.
This can be done through JavaScript constructors. For example, a constructor
resistor could have the following form:

function REScon(r, oc, ocv, cc, ccv){
 this.Rv = r - Math.floor(Math.random() * r * 0.05); // value with 5% tol-
erance

ICICTE 2013 Proceedings

	

413	

 this.Open = oc; // resistor node one graphic element
 this.OpenV = ocv; // resistor node one voltage
 this.Common = cc; // resistor node two graphic element
 this.CommonV = ccv; // resistor node two voltage
 this.type = 'res'; // type of element as resistor
 this.I = 0; // value of flowing current
 }
Let’s assume that a graphic is created via Raphaël consisting of the resistor
symbol and two circles on each “resistor” side. Users of this system should be
able to “connect” this “resistor” with other elements. This is achieved by
clicking with a mouse on each circle. An event puts one end of a graphic line
to the circle center and by clicking on another circle the other end gets to that
as well. This line serves as a connection wire. Several such lines exist as
Raphaël objects allowing users to make various connections. Each circle
serves as a connection node and is assigned to an “electrical” element via the
following constructor:

function CONcon(o, kind) // Variable, element id
 { this.o = o; //circle object
 this.kind = kind; //kind of elements, as resistor, capacitor etc
 this.type = 'con'; //type of object as connector
 this.cx = 0; //X circle center
 this.cy = 0; //Y circle center
}

• First a Raphaël circle object is created: Circle1 = pa-
per.circle(37.17, 328.148, 19.232).attr({"fill": "#000000", "stroke":
"none", "stroke-width": 0, "cursor": "pointer", "opacity": 0});

• Then we assign it to a connector: Circle1Con = new CON-
con(Circle1, '');

• We do the same for second circle and we create a resistor object:
Resistor1 = new REScon(10000, Circle1Con, 0, Circle2Con, 0);

• At the end the attribute “kind” is entered for both circles: Cir-
cle1Con.kind = Resistor1; Circle2Con.kind = Resistor2;

Through this procedure each virtual connector is assigned to an electric ele-
ment and its value. By clicking on each of them, these values and kinds are
stored to an array. After each click, the system checks the connections array
and tries to assign values to MNA matrices accordingly. When users have
made correct connections, the A matrix is invertible. In the opposite case,
connections are not correct, meaning that the “circuit” does not work due to
open node(s). For passive elements and DC voltages this procedure is needed
to be executed only once per connection. But when active elements (like ca-
pacitors) are used with voltages changing through time, it is required to exe-
cute matrix A inversion many times in order to get as many results as possible
within a specific time range. The combination of time intervals and results
assigned as attributes to a Raphaël path object returns the XY representation of
node voltages through time. This is the exact same behavior as that of a real
oscilloscope.

ICICTE 2013 Proceedings

	

414	

While values are assigned fast to matrices, the A matrix inversion is possible
to last long for large circuits. This is a significant factor directly affecting sys-
tem speed. A slow simulation procedure will force each user to abandon the
system no matter how impressive are its graphics. The Gauss-Jordan Elimina-
tion algorithm (Adenegan & Aluko, 2012) offers the solution to this problem.
The idea is to transform the original matrix to another one that is smaller and
therefore easier (hence faster) to solve. To achieve that, the matrix should be
transformed into diagonal form via elementary raw operations. If a zero is lo-
cated in the diagonal rows, it must be switched until a non-zero is in the same
place. If that is not possible, then the system has either infinite or no solu-
tions. Finally, the division of a diagonal element and the right hand element
in each row by the diagonal element in that makes each diagonal element
equal to one (Adenegan & Aluko, 2012).

In the end, the combination of MNA and Gauss Jordan elimination algorithms
within the graphics results in a system that is graphic rich, fast and accurate.

The Case of the Automatic Control Systems Lab
An online simulation system like the one described above has been imple-
mented for the Automatic Control Systems (ACS) laboratory of the depart-
ment of Automation, of the Technological Education Department of Piraeus
Greece. It is accessible through the Web site http://auto-hsae.teipir.gr and
serves attending learners/students and educators. Fundamental concepts of the
control systems theory are taught through the lab courses and for that purpose
there are six working stations. Each of them consists of an oscilloscope, a
function generator, a digital multi-meter, a set of resistors, capacitors, potenti-
ometers and operational amplifiers known as “Analog Computer” and a digital
computer. Students are asked to perform a number of connections on the Ana-
log Computer board and check results on the oscilloscope or multi-meter. The
need to have an online simulation system was triggered by the increase of
learner numbers while due to space and cost limitations it was not possible to
create more working stations enough for all of them. So, three or four students
had to work on a station that was built to serve only two of them. In addition,
students were asking persistently for extra time to work on experiments. Some
previous efforts to solve both problems by using simulation software such as
SPICE (Quarles, Pederson, Newton, Sangiovanni-Vincentelli, & Wayne, n.d.)
did not help them much. Students argued they didn’t just want to learn how
circuits work but they also needed to learn to operate and work with the in-
struments themselves and that is not possible through SPICE. By using all of
the tools and methods already mentioned above an online simulation system
was created. The new system is identical to the real one and it is depicted in
Figure 3.

ICICTE 2013 Proceedings

	

415	

Figure 3. Online simulation system.

Development and implementation of it has gone through two previous ver-
sions and the current one allows students to work anytime it suits them. The
most recent version of the system also enables students to talk to each other
through an embedded real-time chat application. Preliminary feedback indi-
cates that learner/student experience and satisfaction have increased signifi-
cantly. Furthermore, the lab can now serve not only local but also distant
learning students, too.

Next Steps: Towards Web 2.0 & Gamification
In this paper we have presented up to now issues concerning the use of simula-
tions in education and more specifically in engineering education. Further-
more, we’ve presented important technological underpinnings of the simula-
tion system that has been developed to help teach learners modern electronics.
Finally, the ACS laboratory case focused on some of the issues linked with the
deployment of the above system as well as key points in respect of learner
feedback already received.

Reflecting on the development and actual use of the previously presented sim-
ulation system as it currently stands, coupled with the encouraging feedback
we have received from actual learners, who have used the system, has moti-
vated us to turn our attention towards enhancing it further, particularly from a
learning standpoint. Creating a more integrated learning platform where dif-
ferent styles of learning are catered for, including social and peer learning
makes academic sense and it is appealing to us, too. Also, creating a multi-
faceted platform where learning can be both fun and a challenge is also worth
considering. Therefore, a review, analysis and evaluation of important devel-
opments in the fields of Web 2.0, gamification and online learning are ongo-
ing.

Web2.0 is not solely concerned with new developments in fields such as Ja-
vaScript, AJAX, JSON, HTML5, PHP, etc., although they are very important
and could open up new development possibilities for us. Web 2.0 also offers
opportunities to create more comprehensive and integrated learning environ-
ments where learners can interact socially online and also learn from each oth-

ICICTE 2013 Proceedings

	

416	

er. Challenging learners in novel and exciting ways with an aim to enhance
their learning creates new development opportunities.

Key aims for considering Web2.0 social computing enhancements and moving
towards games-based learning and gamification are to enhance the motivation,
engagement and experience of learners. We want to encourage stu-
dents/learners to explore more comprehensively the previously introduced
web-based simulated system and as a result enhance their learning.

Gamification is a relatively new concept, particularly when used within peda-
gogical, learning-oriented contexts. Gamification is defined as the use of
game design elements and game mechanics in non-game contexts (Dominguez
et al., 2013). Outside academia gamification has already been attempted in
very diverse settings. For instance, in a business context Nike has used gami-
fication principles on their website and has also created a host of additional
applications, collectively named Nike+, to increase engagement and loyalty of
web-site visitors and past Nike customers to the Nike brand and products.

Figure 4. Nike and gamification.

In gamified learning environments effort rather than total mastery of concepts,
techniques, experiments etc. are often rewarded. Linking learning challenges
to rewards and acknowledgement of achievements seem to be important un-
derpinnings of modern, gamified environments. Appearing high on leader-
boards, or being able to accrue virtual goods are additional incentives some-
times found implemented in gamified environments. Behaving in an altruistic
manner and helping other learners accelerate their learning could also be con-
sidered as another development path suited to gamified and socially mature
learning environments. Learners in gamified environments can also learn
quickly to see failure as an opportunity to learn from, instead of becoming dis-
illusioned, anxious or overwhelmed.

Gamified learning environments could also encourage desirable group behav-
iours and collective actions. These are qualities that need to be fostered and
enhanced in academia in order to better prepare students/learners for success-
ful future careers.

ICICTE 2013 Proceedings

	

417	

The above initial remarks signify that developments in the fields of Web2.0
and gamification are of relevance when it comes to creating more comprehen-
sive and better integrated learning environments; therefore, they can be used to
influence the future evolution of the above online simulation system.

Concluding Remarks

The development of the online simulation system presented earlier has been a
considerable and multifaceted challenge. Advances and innovations in the
fields of Web2.0 and gamification provide rich opportunities to develop more
forward looking simulated environments and learning platforms.

Evolving learning environments, including the online simulation system pre-
sented in this paper, can make use of developments and lessons learned in the
fields of Web 2.0 social computing and gamification to create more compre-
hensive and better integrated learning environments.

References

Adenegan, K. E. and Aluko T. M. (2012). Gauss And Gauss-Jordan
Elimination Methods Forsolving System Of Linear Equations:
Comparisons Andapplications. Retrieved from Journal of Science and
Science Education, Ondo Vol. 3(1), pp. 97 – 105:
http://josseo.org/_ebooks/Adenegan%20and%20Aluko%20p97-105.pdf

Baranovskiy, D. (n.d.a). Dmitry Baranovskiy’s web log. Retrieved March 17,
2013, from http://dmitry.baranovskiy.com/

Baranovskiy, D. (n.d.b). Raphaël—JavaScript library. Retrieved March 17,
2013, from http://www.raphaeljs.com/

Cheever, E. (n.d.). Modified nodal analysis. Retrieved from
http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA2.html

Dominguez, A. E. et al. (2013). Gamifying learning experiences: Practical
implications and outcomes. Computers & Education, 63, 380-392.

List of JavaScript libraries. (n.d.). Retrieved March 17, 2013, from Wikipedia:
http://en.wikipedia.org/wiki/List_of_JavaScript_libraries

Quarles, T., Pederson, D., Newton, R., Sangiovanni-Vincentelli, A., & Wayne,
C. (n.d.). The spice page. Retrieved from Berkeley Wireless Research
Center: http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

Scalable Vector Graphics. (n.d.). Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

Author Details
Constantinos Iliopoulos
Costas.Iliopoulos@uws.ac.uk
Anastasios Oikonomidis
anoikon@teipir.gr

