
ICICTE 2012 Proceedings

61

MICROWORLDS: BUILDING POWERFUL IDEAS IN THE
SECONDARY SCHOOL

Craig Jenkins
University of Wales

Wales

Abstract
In the 1960s the Massachusetts Institute of Technology (MIT) developed a
programming language called LOGO. Underpinning this invention was a
profound new philosophy of how learners learn. This paper reviews research
in the area and asks how one notion in particular, that of a microworld, may be
used by secondary school educators to build powerful ideas in Science,
Technology, Engineering and Mathematics (STEM) subjects.

Theories of Knowing
This paper examines the microworld as a tool for acquiring powerful ideas in
secondary education and explores its potential role in making relevant
conceptual learning accessible through practical, constructionist approaches.

In line with this aim, the paper is split into three main sections. The first
section looks at the underlying educational theory behind microworlds in
order to set up the rest of the paper. The second section critically examines
the notion of a microworld in order to draw out the characteristics of a
microworlds’ approach to learning. Finally, the paper ends with a real-world
example of a microworld that is designed to build key, powerful ideas within a
STEM domain of knowledge.

To begin to understand the educational theory behind microworlds, a good
starting point is to consider the ways in which learners interact with
educational technology. In 1980, Robert Taylor provided a useful framework
for understanding such interactions. For Taylor, the part a computer plays in
each interaction can be understood in terms of three roles: tutor, tool and tutee.

The first type of interaction identified by Taylor (1980) is that where the
computer teaches the learner, taking the role of tutor. The computer presents
subject content to the learner and ascertains the learner’s understanding by
providing a test and evaluating the response. Taylor’s vision of tutor-mode
computing is expressed as follows:

 [T] he computer tutor keeps complete records on each student being

tutored; it has at its disposal a wide range of subject detail it can
present; and it has an extensive and flexible way to test and then lead
the student through the material. (Taylor, 1980, p. 3)

The second mode of computing identified by Taylor (1980) is where the
learner uses the computer as a tool. A wide variety of time-consuming, low-

ICICTE 2012 Proceedings

62

order tasks can be implemented by the computer quickly and easily, thus
enabling learners to spend their time carrying out more useful activities:
“necessary but routine clerical tasks of a tedious mechanical kind [are
transferred] to the computer”(Taylor, 1980, p. 3). And tool-mode computing,
for Taylor, has useful applications in many areas of school life:

 [T] he tedious recopying of edited manuscripts of texts or even music

can be relegated to the computer through word or musical notation
processing software; the laborious drawing of numerous intermediate
frames for animated cartoons can be turned over to the computer
through graphics software. (Taylor, 1980, p. 3)

Finally, Taylor’s third mode of computing in the classroom is where the
computer takes on the role of the tutee. This involves the student
programming the computer and learning to “talk to the computer in a language
it understands” (Taylor, 1980, p. 3). Programming using a computer is an
integral skill for Taylor, serving as a means to “enable the child to link his or
her experience to the deep, fundamental mathematical ideas we most want
children to learn” (Taylor, 1980, p. 7).

Taylor (1980) is clear that is the latter mode, where the learner programs the
computer, which confers the greatest educational benefit for the learner. A
microworlds approach to learning provides a quintessential example of this
type of interaction. Traditionally, however, it is the first mode of computing
that has dominated the classroom.

The tutor mode of computing is aligned with what has been termed the
instructionist approach to educational technology. In a speech to a conference
of educators in Japan in the mid-1980s, Seymour Papert explained:

Instructionism is the theory that says, "To get better education, we
must improve instruction. And if we're going to use computers, we'll
make the computers do the instruction." And that leads into the
whole idea of computer-aided instruction.

More recently in The Children’s Machine (1993, Papert uses Paulo Freire’s
criticism of instructionism to illustrate the epistemological connotations of
such a model. He noted, “ Paulo Freire expresses the criticism most vividly in
his description of School as following a banking model in which information
is deposited in the child’s mind like money in a savings account.” (Papert,
1993, p.14)

Put simply, instructionism views the learner as an antenna to receive
transmitted knowledge: the mind is a “vessel to be filled” (Papert, 1993, p.14).
The transmitter of knowledge is the teacher, or in the case of educational
technology, the computer. This epistemological model has, unsurprisingly,
given rise to a proliferation of software built around the idea of drill-and-
practice. The microworlds approach to learning, on the other hand, is
premised on a very different theory of knowing.

ICICTE 2012 Proceedings

63

Jean Piaget, a self-termed genetic epistemologist, rejected such an
instructionist theory of knowing. As Boden (1994) points out, for Piaget
“knowledge is [...] actively constructed, by a dialectical process of
assimilation and accommodation” (p. xi). Learners fit external input into their
existing mental models through a process of assimilation. In turn, learners
change their mental models based on this input through a process of
accommodation (Boden, 1994). For Piaget, learning was not about how
efficiently a student receives transmitted knowledge. Instead, he proposed
that learners are active constructors of knowledge, not passive recipients. Put
simply, learners make knowledge, they do not receive it. This fundamentally
different theory of knowing has been coined constructivism.

The quintessential microworld of Turtle Graphics, created by Papert and his
team at MIT, is rooted in this constructivist theory of knowing. More
specifically, Papert was concerned with a particular mode of constructivism
(with a ‘v’) that he termed constructionism (with a ‘n’). In Situating
Constructionism (1991), Papert makes this very important distinction:

 Constructionism - the N word as opposed to the V word - shares

constructivism’s connotation of learning as “building knowledge
structures” [and] then adds the idea that it happens especially
felicitously in a context where the learner is consciously engaged in
constructing a public entity, whether it’s a sandcastle on the beach or
a theory of the universe.

In this way, constructionism (with a ‘n’) entails constructivism (with a ‘v’)
since both theories of knowing situate learners as active constructors of their
own knowledge. What constructionism adds, then, is that knowledge is best
constructed when learners are making meaningful things. It is for this reason
that Papert’s theory is often summed up by the phrases “learning by making”
and “learning by designing.” As Mitchel Resnick (2002, p. 33) explains
through analogy, constructionism calls for thinking about computers more like
finger paint and less like a television. Computers, in other words, should be
used for designing and creating, not for receiving:

 Teachers cannot simply pour information into the heads of learners;

rather, learning is an active process in which people construct new
understandings of the world around them through active exploration
[...] people don’t get ideas, they make them. [Italics in original].
(Resnick, 2002, p. 33)

To summarize, the foundation of a microworlds approach to learning is a
constructionist, and an entailed constructivist, theory of knowledge
acquisition. Learners construct their own understanding of the world by
exploring it, and knowledge acquisition is particularly effective when they are
making something meaningful within in it. The focus of education
technologists is no longer on improving teaching to maximize the receipt of
knowledge (as instructionism would have it). Instead, it is about setting up the
right conditions for learning: creating an environment for exploring, creating,
doing. In Papert’s (1980s) own words, constructionism is about “giving

ICICTE 2012 Proceedings

64

children good things to do [italics in original] so that they can learn by doing
much better than they could before.” This raises the question of what exactly
is a good thing to give children to do. For Papert, the answer to this question
resides in a well-designed microworld.

What is a Microworld?
So what exactly is a microworld? In his key text Mindstorms (1980), Papert
provides a useful starting point when discussing his LOGO Turtle Graphics
microworld:

 The Turtle World was a microworld, a “place,” a “province of

Mathland,” where certain kinds of mathematical thinking could hatch
and grow with particular ease. The microworld was an incubator [...]
The design of the microworld makes it a “growing place” for a specific
species of powerful ideas or intellectual structures. (p. 125)

Papert’s choice of words here is very important. He uses words like hatch,
grow, and species. This is because, for Papert, the microworld provided a
means for learners to acquire knowledge in a natural way. Early language
development in infants does not require didactic instruction: language
develops naturally through immersion within a linguistic environment. A
microworld, for Papert, is an environment within which ideas in any domain
can develop in a similar way. Turtle Graphics, for example, is a microworld
where mathematical ideas can develop naturally. He refers to this natural
process of learning, without the need for didactic instruction, as Piagetian
learning.

Papert’s choice of words in the previous quotation is important for another
reason. Words like grow and hatch are mixed in with words like place and
province of Mathland. This lexicon of place implies a need for borders or
boundaries, which is a key part of a microworlds approach to learning. Put
simply, microworlds should not be reduced to virtual sandpits that practice an
“anything-goes” approach to learning. Microworlds are designed with
boundaries to enable the discovery of key ideas within a particular domain of
knowledge. As Mitchel Resnick puts it, “Microworlds are simplified worlds,
specially designed to highlight (and make accessible) particular concepts and
particular ways of thinking” (1997, p. 50).

More recently, Rieber (2004, p.588) has established a conceptual framework
for understanding microworlds by framing them in terms of five functional
attributes. By discussing each of these attributes in turn, it is possible to gain
a clearer picture of what a contemporary microworld may look like in practice.

The first attribute identified by Rieber is that microworlds are domain-
specific. The seminal microworld of Turtle Graphics was designed so that
learners discover powerful ideas in the domain of mathematics. In particular,
Turtle Graphics was designed to cultivate an understanding in the area of
geometry (Papert, 1972). By entering the directional command RIGHT 90,
the learner will find that an on-screen turtle rotates around its centre through
an angle of 90 degrees. One of the very most basic directional commands in

ICICTE 2012 Proceedings

65

Turtle Graphics, then, enables learners to explore the impact of increasing and
decreasing the angle of turn.

Rieber’s second attribute of a microworld is that it must be comprehensible to
the learner. The microworld must have a low floor to facilitate access for
learners at various stages of development. One of the key problems with the
Turtle Graphics microworld is that learners are required to remember syntax.
As Resnick et al. explain: “Early programming languages were too difficult to
use, and many children simply couldn’t master the syntax of programming”
(2009, p. 63). The Lifelong Kindergarten groups at MIT have tried to lower
the floor further by developing a building-block programming language called
Scratch. Put simply, Scratch allows the learner to piece together chunks of a
program in an experience just like slotting together Lego bricks. Learners can
build their own programs without having to remember the correct sequence of
commands.

Third, the microworld must be intrinsically motivating for the learner.
Learners must remain engaged with the microworld for long enough so that
they develop through stages of increasing complexity. If Rieber’s second
requirement was for a low floor, then it must also motivate to reach a high
ceiling. This idea is similar to Rieber’s fourth characteristic of a microworld
as an agent for immersive and playful activity. One of the key design criteria
for the Lifelong Kindergarten Group when creating Scratch was that it
supported “many different types of projects (stories, games, animations,
simulations), so people with widely varying interests are all able to work on
projects they care about” (Resnick et al., 2009, p. 64). If projects have a
personal appeal, learners are more likely to immerse themselves within them.
They will view the project positively as play rather than negatively as work.
This immersion will enable learners to gradually increase the complexity in
their creations and facilitate learning within a particular domain of knowledge.

Rieber’s final attribute of a microworld is that it should be designed and
implemented with a constructivist paradigm of learning in mind. As Rieber
(2004) reminds us, this final attribute also carries a set of pedagogical
assumptions external to the microworld itself. So when does a microworld no
longer become a microworld? The answer is when students experience it
through a series of didactic teacher-led tasks instead of learner-focused
exploration. In Mindstorms, Papert set out his vision for a constructionist
approach to learning with microworlds:

 The [...] teacher will answer questions, provide help if asked,

sometimes sit down next to a student and say “Let me show you
something.” What is shown is not dictated by a set syllabus. (1980,
p.179)

In summary, a microworld provides an environment for exploratory, Piagetian
learning without didactic instruction. A microworld does, however, have
some constraints. It should be specific to a particular domain of knowledge.
It needs a low floor (to enable easy access at first) and a high ceiling (to
enable progression to increasing complexity later). Above all, the microworld

ICICTE 2012 Proceedings

66

should enable the learner to make something that is personally meaningful to
them. With this checklist in mind, it is now possible to see the theory of
microworlds put into practice.

Microworlds in Practice
As an example of a microworld in practice, I would like to tell you about a
microworld project that I am going to be piloting in the secondary school
where I teach. It will be piloted with a group of eleven-year-old children in
their first year at secondary school. For their discrete ICT lessons, these
children are being placed in a smaller support group so that the pace of work
can be suitably adjusted. All of the learners in the group have additional
learning needs (ALN) and several have been issued statements of special
educational need (SEN) by the local education authority. The children in the
group benefit from a much higher LSA (Learning Support Assistant)-to-
student ratio than mainstream classes.

The project grew out my interest in three educational tools: Scratch (the
building-block programming language), LEGO Education WeDo (a real-world
construction kit with sensors and motors) and PicoBoards (electronic sensor
boards that provide inputs for the computer). By connecting the WeDo LEGO
bricks and the Picoboard to the computer, Scratch is able to interact with the
real-world through motors and sensors to provide a rich, exploratory
experience for students.

Scratch has dramatically lowered the skill level required for beginners by
removing the problem of syntax. My microworld project, however, grew out
of my desire to lower this floor even further. I wanted to increase access to
learners with ALN, at least initially, so that they could get started on their
programming creations more quickly and easily. In looking for ways to do
this, I became aware of the BYOB (Build Your Own Blocks) project.

As the name suggests, BYOB is an offshoot of Scratch that enables users to
build their own blocks to extend the standard Scratch offering. The BYOB
website provides a rationale for the project: “to extend the brilliant
accessibility of Scratch to somewhat older users—in particular, non-CS-major
computer science students—without becoming inaccessible to its original
audience” (Mönig & Harvey, 2011). The rationale of BYOB fitted perfectly
with what I was aiming to achieve, but in reverse. BYOB wanted to extend
Scratch whereas I wanted to simplify it. BYOB wanted to retain the standard
elements of Scratch for its younger audience whilst I wanted to retain them to
extend the more able learners within the support group. With this in mind, I
set out to use BYOB to design a new, simplified set of blocks. My aim was
simple: to increase accessibility for the support group so students could
experiment more easily with the motors and sensors that were communicating
with Scratch. I started designing a microworld, or more accurately a
microworld within a microworld within a microworld (my blocks are created
in BYOB, which is in turn based on Scratch), for the ALN students to use.

To illustrate by means of an example, I will examine one block that I have
created a little more closely. Imagine a cartoon animal on the screen that is

ICICTE 2012 Proceedings

67

always in one of two states, feeling dizzy or feeling normal, depending on
whether the input from the computer indicates an upright position. When the
sprite is in a dizzy state, the sprite’s costume needs to change to look dizzy.
But if the sprite is not in a dizzy state, then it must be in a normal state, and
the sprite’s costume must change to reflect this. When using the standard set
of Scratch programming blocks, the coding for this is not straightforward for
beginners (see Figure 1). First a sensing block is required to return the input
from the tilt sensor. This must be placed within an operator block where the
required amount of tilt is specified. This in turn forms the argument for the
conditional block that encloses it. Finally, a loop surrounds the conditional,
and the true or false values to return need to be placed in the named middle
gaps.

Figure 1. Standard scratch tilt sensor blocks.

Figure 2. Student and teacher view of BYOB tilt sensor blocks.

To make working with sensors easier, these five blocks can be amalgamated
into just one (see Figure 2) using the BYOB framework. The student needs
only to add in the true or false values to be returned by the conditional. The
numeric data type of the tilt sensor value has in effect been converted to
Boolean because the student now only has to deal with two potential inputs:
tilted and not tilted. When more sophisticated control of the tilt input is
required, students may progress to a model similar to that of the standard
scratch blocks (see Figure 1).

ICICTE 2012 Proceedings

68

Many other simplified blocks can be created using BYOB in order to lower
the floor of Scratch and to make it more accessible to ALN learners. Now that
the on-screen animal looks dizzy if you move him around (via tilt sensor
inputs), the student may want him to make a scared noise if he hears a bang
(via sound sensor inputs). As well as being in one of two states of dizzy or
normal, the on-screen animal can now additionally be in one of two states of
startled and not startled (see Figures 3 and 4). The animal could even be dizzy
and startled at the same time, leading to a very perplexed animal indeed.

Figure 3. Standard scratch sound sensor blocks

Figure 4. Student and teacher view of BYOB sound sensor blocks.

The microworld being created here through BYOB is still very much a project
in development. I am currently in the early stages of the project and I am
completing my microworld designs. A detailed study will be produced as part
of my PhD thesis to report on the findings of its implementation in the
classroom.

By exploring and experimenting within this microworld, it is hoped that
learners are able to learn about some key concepts in computer science and
control without becoming overwhelmed. The two simple blocks I have
created here, for example, enable learners to find out about input variables,
feedback loops and conditionals. It is hoped that design within this
microworld enables learners to construct mental models of key computing
concepts that will become vital later on in the education cycle. By

ICICTE 2012 Proceedings

69

experimenting with microworlds, learners are able to build powerful ideas in
STEM domains.

References
Boden, M. (1994). Piaget (2nd ed.). London: Fontana.
Monig, J. & Harvey, B. (2011). Build your own blocks. Retrieved from

http://byob.berkeley.edu/
Papert, S. (1972). A computer laboratory for elementary schools.

Computers and Automation, 21(6), 19 - 23.
Papert, S. (1980’s). Constructionism vs. instructionism. A speech delivered

by video to a conference of educators in Japan. Retrieved from
http://www.papert.org/articles/const_inst/const_inst1.html.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas.
New York: Basic Books.

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.),
Constructionism (pp. 1 - 11). Norwood, NJ: Ablex.

Papert, S. (1993). The Children’s machine: Rethinking school in the age of
the computer. New York: Basic Books.

Resnick, M. (1997). Turtles, termites and traffic jams: Explorations in
massively parallel microworlds. Massachusetts: MIT.

Resnick, M. (2002). Rethinking learning in the digital age. In G. Kirkman
(Ed.), The Global information technology report: Readiness for the
networked world (pp. 32 - 37). Oxford: Oxford University Press.

Resnick, M., Maloney, J., Monrey-Hernandez, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., &
Kafai, Y. (2009). Scratch: Programming for all. Communications of the
ACM, 52(11), 60 - 67.

Rieber, L. (2004). Microworlds. In D. Donassen (Ed.), Handbook of
research for educational communications and technology (2nd ed.)
(pp. 583 - 603). Mahwah, NJ: Lawrence Erlbaum Associates.

Taylor, R. P. (1980). Introduction. In R. P. Taylor. (Ed.), The computer in
school: Tutor, tool, tutee (pp. 1 – 10). New York: Teachers College
Press.

