
ICICTE 2017 Proceedings

	 216

INTRODUCING INTELLIGENT EXERCISES TO SUPPORT
WEB APPLICATION PROGRAMMING STUDENTS

Joe Appleton

Southampton Solent University
United Kingdom

Abstract

Using computer based tutoring software to assist students to learn traditional
programming languages has been widely explored. With the widespread
growth of the Internet, universities are teaching more web specific
programming languages. Computer based tutoring systems provide limited
support for such languages. This paper presents a prototype system that aims
to support students in learning the web language JavaScript. The potential of
this system is explored by using a mixed methods survey design completed by
40 students and 10 staff members. Results show that our system can aid
students in learning to program the web-based language JavaScript.

Keywords: computer-based learning environments, intelligent tutoring
systems, JavaScript, introductory programming course

Introduction
Within the computing department at Southampton Solent University, we share
a widespread and yet to be solved problem: the challenge of teaching first year
students to program.

While programming is a fundamental topic taught in university computing
courses, most agree it is a complex skill to master. It is widely accepted that it
takes an estimated ten years of experience to progress from a beginner to an
expert programmer (Winslow, 1996). It is therefore imperative that the start of
a student’s programming journey is as smooth as possible. Evidence would
suggest however this is not the case. A study by Bennedsen and Caspersen
(2007) presents the finding that the worldwide pass rate for introductory
courses is just 67%.

Compounding this problem is the proliferation of a variety of courses
including a programming element into their syllabus. For example, around 120
students a year undertake the introductory web programming unit at
Southampton Solent University. The participants are diverse, not only in
initial ability, but also in their areas of study. Courses range from the more
business aligned business information technology to the more technical
discipline of software engineering.

The issues we encounter delivering the unit goes beyond just the pass rate and
expands into the variability of the results, with some courses averaging over
70% and others below 37%. Herein lies a familiar dilemma when teaching
programming to a diverse group of students (Cooper, Dann, & Pausch, 2000).
A seemingly contradictory problem presents itself, how can we move at a pace

ICICTE 2017 Proceedings

	 217

such that the weaker students do not fall behind, while at the same time
challenging the stronger students? Remarkably, there is a solution to this
seemingly paradoxical problem proposed by (Bloom, 1984).

Over 30 years ago Bloom (1984) presented a seminal study demonstrating that
providing certain conditions are met, almost all students can learn topics
regardless of complexity. Firstly, what Bloom calls mastery of learning must
be applied. Mastery of learning involves breaking subject matter down into
manageable progressive chunks. Each chunk must be mastered before the next
one is attempted. Secondly, each student must receive high-quality one-to-one
tutoring (Bloom, 1984). In meeting these two conditions Bloom demonstrated
that students could outperform those in a traditional classroom setting by 2
standard deviations. This equates, to the average student exposed to previously
mentioned conditions, to outperforming 98% of students receiving traditional
classroom teaching.

Such an increase in learning is indeed a tantalising proposition. However, it
has been difficult to find replication studies that incorporate both tutoring and
mastery of learning. Vanlehn (2011) found that although tutoring has a
positive effect, Bloom’s (1984) claim of 2 standard deviations might be too
high. Kulik and Fletcher (2015) compared five meta analyses looking at the
effects of peer tutoring in secondary and primary schools. The median effect
of the improvement was 0.4 standard deviations.

Given the economic constraints faced by most higher education institutions,
the cost of rolling out one-to-one support for all students is prohibitive. Bloom
(1984) therefore derived the “two sigma problem.” The premise is simple: Can
group instructional methods be as effective as one-to-one tutoring? A more
cost effective alternative is to utilise computer based technology and develop
software that will provide students with enhanced feedback while at the same
time still maintaining the traditional classroom setting.

In this paper, we present a proposed solution that demonstrates the
implementation of portable intelligent exercises and trial them on our
introductory web programming course at Southampton Solent University.
We then go on to validate our system by surveying staff and students. Our
initial findings are positive, suggesting that using such exercises support a
diverse range of programming abilities.

Background

In order to set the scene of the problem we are trying to solve, Southampton
Solent University must firstly be explored from the context of its place in the
wider higher education ecosystem.

Southampton Solent University
Southampton Solent is a post-1992 UK based institution1. Typifying its post-
1992 counterparts, the university has a strategy of widening university
participation (Solent University, 2015). As such, the university has a diverse
student population, with many of the students being considered non-
traditional in terms of socio-economic and educational background (Read,

ICICTE 2017 Proceedings

	 218

Archer, & Leathwood, 2003). The widening higher education sector has
presented challenges that were previously not encountered by more traditional
institutions. A study by Thomas and Quinn (2006) found that non-traditional
students, when compared to their traditional counterparts are often unprepared
for their university experience. It is therefore not surprising that universities
most successful at widening participation have some of the highest dropout
rates (HESA, 2016). This problem is amplified when trying to teach complex
topics such as programming, where even more traditional institutions have low
pass rates (Bennedsen & Caspersen, 2007).

Computer Assisted Learning
The use of computer based instructional software to assist students in learning
is not new. Computer based tutoring software can be traced back to the late
1960s (Atkinson, 1968). Vanlehn (2011) broadly categorized such systems
into two groups, computer based instruction and intelligent tutoring system.
Computer based instruction (CBI) aims to provide immediate feedback to
students around some problem they are trying to learn. Intelligent tutoring
systems (ITSs), aim in part to simulate a human by giving feedback and hints
in the form of natural language (Vanlehn, 2011).

Both CBI and ITS systems generally consist of three core models (Hamed &
Abu Naser, 2017).

Domain model. This represents the body of knowledge that assists the
students in learning.
Student Model. This represents the actual student. It contains
information that measures the student’s mastery of specific topics
belonging to the domain model.
Dialog Model. This is the interface between the intelligent tutor and
the student. It facilitates communication with the user of the system.

There is no agreed consensus on the increased learning effect that such
systems have. A widely cited meta-analysis suggested that CBIs increases test
scores 0.3 standard deviations over a standard classroom setting (Kulik &
Kulik, 1991). A more recent meta-analysis by Kulik also Fletcher (2015) also
recognised this to be the case.

The analysis by Kulik and Kulik (1991) had wide inclusion criteria and
reviewed 245 studies. The studies covered a wide range of subjects, with
participants ranging from every level of education. Kulik and Kulik stated the
limitation of such large-scale meta-analysis is the time it takes to set up. When
such studies are being constructed, rapid advancements in computing power
and technology can occur. The consequence of the speed of such
advancements means that the latest studies are often omitted from the analysis.

The latter meta-analysis by Kulik and Fletcher (2015) had a more stringent
selection criteria. Studies were required to have a control group receiving
conventional instruction, and CBI achievement outcomes must have been
measured quantitatively. Like the earlier studies by Kulik and Kulik (1991),
subject selection and age was wide ranging. Vanlehn (2011) revealed that the

ICICTE 2017 Proceedings

	 219

ITSs are thought to outperform their CBI counterparts, producing increased
test scores of 1.0 standard deviations. Vanlehn went on to note that these
beliefs stem from an influential article by Anderson, Corbett, Koedinger,and
Pelletier (1995) that summarised several ITS studies in a higher education
setting. Studies were run with a programming, geometry and algebra ITSs
over the course of a decade.

Given the generally accepted learning benefits of using such systems, their use
in supporting higher education students to learn programming has been widely
explored. Some examples that have shown positive feedback include a ITCs
developed by Al-Bastami and Abu Naser (2017). It aims to assist university
students in learning the programming language c#. A further example is
JTITS, an ITCs system to assist in learning the programming language Java
(Sykes & Franek, 2003). BITS is an example of a web based ITCs system
(Butz, Shan Hua, & Maguire, 2004).

It must be noted that computer tutoring systems in the context of higher
education are generally based on supporting traditional programming
languages such as C, C#, C++ and Java. Such languages existed long before
the widespread growth of the Internet. This has led to the ever-increasing
popularity of web applications. At the time of writing, two web programming
languages PHP and JavaScript are ranked as the 7th and 8th most popular
programming languages used in industry (TIOBE, 2017). More and more
universities are therefore teaching web-focused languages to beginner
programmers. Surprisingly, considering the widespread use of such languages,
computer based tutors to support students in a higher education setting have
been lightly explored. Weragam and Reye (2013) claimed to have developed
the first PHP intelligent tutoring system. However, there are no current
systems to support students in learning JavaScript. We therefore deemed it
necessary to investigate if such a system can be used to teach the specific web
focused programming language of JavaScript.

System Architecture
When creating our system, we not only wanted to assist students in learning to
program the web based programming language JavaScript, but also to
encourage them to engage with the course content. We therefore decided to
create an intelligent tutoring system that was not tightly coupled to the domain
model (the course content).

The goal is to complement the body of information being delivered rather than
replace it with an automated tutor. We shall refer to our system as smart
intelligent exercises, as unlike the more traditional intelligent tutoring systems,
it consists of only two modules; a domain model and dialog model.

Domain model. To create the domain model, the course content was broken
down into standalone sections and subsections. The goal is to keep the
students focused on a very specific concept at a time. Breaking a subject
matter down is such a way is one of the cornerstones of Bloom’s mastery of
learning (Bloom, 1968).

ICICTE 2017 Proceedings

	 220

The entire body of information was structured using a tool called gitbook2.
This tool allows notes to be distributed over the Internet. Students are not
required to download any specific content to access the material. Furthermore,
the content is device and operating system agnostic.

Dialog model. The interface for our intelligent tutoring system (Figure 1) had
to be easily embedded into a web page. It was developed to be stand alone, in
that it can function with or without the domain model.

The interface was developed from scratch using the programming language
JavaScript, along with a number of freely available JavaScript tools. The ace
text editor3 was utilised to provide a realistic programming environment. The
reader will note when observing Figure 1, that the code used to complete the
exercise is multi colored. This is known as syntax highlighting and greatly
increases the readability of programming code. Another key tool was a
sandbox environment4. Such a tool allows the compilation of code and the
evaluation of that body of code; this enables the correctness of a solution to be
processed.

In order to create the questions, the operator must first define a problem and
then map that problem to a solution. When student complete that problem,
they are provided with instant feedback. Due to time constraints and the early
stage of this research, the feedback is simplistic, indicating if the question is
correctly answered and if any programmatic errors exist. Once the questions
are created, they can simply be embedded into any web based content. See
Figure 2.

Figure 1. Example of a how the exercises appear to students.

ICICTE 2017 Proceedings

	 221

Figure 2. An example of a smart exercise embedded into the notes.

Evaluation
To validate the potential of our smart exercises, a study was conducted at
Southampton Solent University during the academic year of 2016-2017. The
study was delivered to first-year undergraduate students undertaking an
introductory web-programming course. A total of 40 participants opted to take
part in our evaluation survey.

Over a 4-week period smart exercises were embedded into subsections of the
notes. Each subsection of the notes contained the necessary information to
complete its corresponding embedded exercise (Figure 2).

The exercises were used in the weekly 2-hour practical sessions. At the start of
the session the tutor would instruct the student to complete the smart exercises
and demonstrate their solutions. They were required to complete these
exercises before getting on with a main larger task. The hope was to in effect
force the students to re-engage with the course content.

At the end of the 4-week evaluation, an ethically approved survey was
distributed. The aim of the survey was twofold: firstly, to determine if students
found intelligent exercises useful and secondly to tie this sentiment to their
programming ability. We also distributed the survey to staff members who had
experiences of delivering technical topics. Staff were asked to fill the survey
out from the perspective of a novice programming student.

The survey questions were split into three sections. The first section was
designed in order to determine how strong students are at programming. It
consisted of six questions whereby students were required to rate how well
they understood various fundamental programming concepts. Respondents
were required to rank their understanding on a 5 point Likert scale, of 1 no
understanding to 5 total understanding. Questions for this were based on a
similar survey by Lahtinen, Ala-Mutka, & Järvinen (2005), which in part
measures student’s understanding of various programming techniques.
Questions for the second and third sections were specific to our system and
therefore developed by the authors.

ICICTE 2017 Proceedings

	 222

The second section was developed to measure if the exercises were well
received. Respondents were required to answer three questions. Questions
were about the usefulness of the intelligent exercises. A 5-point scale was
again used, with 1 meaning total disagreement to 5 meaning total agreement.
The third section was a single open-ended question, asking for any further
opinions. This allowed us to combine qualitative and quantitative feedback
into a mixed methods single survey.

Results
The survey was distributed via email to 120 students: 40 students and 10 staff
members completed it. The mean answers were calculated and are presented
in Table 1..

Table 1

Mean Survey Results

In Table 2, two sub student groups are identified: those that feel they
understand the fundamental programming concepts and those that do not. We
assumed students who scored 3 or above for each of the programming
understanding questions feel confident in all the core programming topics.
Those scoring below 3 on each of the programming understanding questions,
we categorised as not confident. This process yielded a group of 24 confident
programmers and 10 not confident programmers.

Question Student (40) Staff (10)

CURRENT UNDERSTANDING OF PROGRAMMING

 (1 no understanding to 5 total understanding)

1) Loop structures such as for and while loops 3.55 2.25

3) Understanding how to structure a program 3.55 2.28

4) Using variables and their scope 3.44 2.4

5) Designing a program in order to solve a given task 3.47 3.12

6) Designing and using functions 3.55 2.22

USING EMBEDDED EXERCISES TO SUPPORT YOUR LEARNING

 (1 strongly disagree to 5 strongly agree)

7) Do you feel using embedded exercises could make
JavaScript easier to understand? 4.00 4.50

8) Do you feel embedded exercises enhance the notes? 4.13 4.52

9) Do you feel using these exercise would make the learning
process more enjoyable? 4.28 5.00

ICICTE 2017 Proceedings

	 223

Table 2
Confident vs. Not Confident Programmers

Discussion 
Students overwhelmingly felt they had a stronger grasp of programming than
the academic staff felt they had. Students consistently rated their actual
understanding higher than that of the perception of the students.

The feedback both from the lecturers and students was positive. There was a
slight weighting with regards to lecturers thinking that students would find the
system slightly more useful than they actually did. Interestingly, when we split
the students into groups that understood and did not understand the
fundamental programming concepts, there was little difference in terms of
sentiment. This promising result, suggests that our exercises can support
programmers of all abilities. In fact, students who felt they were strong at
programming thought they would get slightly more use out of the exercises
than their not so confident counterparts. The only question where weaker
students rated higher was question 9, which assesses whether using such a
system is more enjoyable. One potential inference from this result is that
perhaps weaker students want a more enjoyable learning experience whereas
the stronger ones want greater challenges.

Out of the 40 student responses, 15 responded to the open question. Again the
general feedback was very positive with comments such as:

“This is definitely something I would use.”
“Makes learning to program much easier.”
“It’s similar to codecademy which I like and find very useful.”

With regards to academics, a similar sentiment to that of the students was
shared with comments such as:

“This will encourage students to engage with content.”

Question Confident (24) Not Confident (10)

USING EMBEDDED EXERCISES TO SUPPORT YOUR LEARNING

(1 strongly disagree to 5 strongly agree)

7) Do you feel using embedded
exercises could make JavaScript
easier to understand?

4.16 4.2

8) Do you feel embedded exercises
enhance the notes? 4.33 4.2

9) Do you feel using these exercise
would make the learning process
more enjoyable?

4.04 5.00

ICICTE 2017 Proceedings

	 224

Conclusion
We began this paper by presenting the widespread problem of students
struggling to learn to program. We then proposed that the solution came in the
form of the “two sigma problem” (Bloom, 1984), which presents us with the
challenge of creating group instructional methods as effective as one-to-one
tutoring.

In our search for a solution, we explored several computer based tutoring
tools. We identified that such tools had limited support for web programming
languages. Subsequently, smart exercises that could be embedded into the
content were developed to assist students in learning to program in the web
based JavaScript language.

Students used these exercises over a 4-week period. The feedback was
overwhelmingly positive, and we therefore consider these exercises to have
potential in the wider context of our web-programming course.

Limitations
Our survey was distributed to 120 student participants, however only 40
responded. Due to this sample not being a randomised, selection bias is a
potential issue and must be taken into consideration. To gather qualitative
data, students were required to respond to optional open-ended questions.
Responses in this case were 15 students, this allowed for only limited
inferences due to lack of responses.

Future Work
As future work we plan to implement two further modules into our system.
The first is a student module that can map students’ learning paths and make
recommendations based on their ability and performance. The further
additional module will be an analytics module that will measure student
engagement with the system. Such data will allow continual feedback to
academic staff on how the cohort of students are performing. Following the
implementation of these modules, long-term research addressing previous
limitations could be run on the effectiveness of our system. The analytics
module would allow us to come up with a measurement of student
engagement, which could further enhance our research methodology.

Notes
1. The Conservative Party first issued university charters to a number of

former polytechnics and higher education institutions in1992.
2. www.gitbook.com
3. ww.ace.c9.io
4. https://github.com/gf3/sandbox

References
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995).

Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4(2),
167-207.

Atkinson, R. C. (1968). Computerized instruction and the learning process.
American Psychologist, 23, 225–239.

ICICTE 2017 Proceedings

	 225

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory
programming. ACM SIGCSE Bull, 39(2), 32-36.

Bloom, B. S. (1968). Learning for mastery. Instruction and Curriculum.
Regional Education Laboratory for the Carolinas and Virginia, Topical
Papers and Reprints, Number 1. Evaluation comment, 1(2), n2.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educational
Researcher, 13(6), 4-16.

Butz, C. J., Hua, S. & Maguire,R. B. (2004). A web-based intelligent tutoring
system for computer programming. Web Intelligence, 2004. WI 2004.
Proceedings. IEEE/WIC/ACM International Conference on. IEEE, 2004.

Cooper, S., Dann, W. & Pausch, R. (2000). Alice: a 3-D tool for introductory
programming concepts. CCSC'00: Proc. 5th Ann. CCSC Northeastern
Conf. of the J. of Computing in Small Colleges (pp. 107-116), Mahwah,
NJ, USA: Consortium for Computing Sciences in Colleges.

Hamed, M. A., & Abu Naser, S. S. (2017). An intelligent tutoring system for
teaching the 7 characteristics for living things. International Journal of
Advanced Research and Development , 2(1), 31–35.

Kulik, C.-L. C., & Kulik, J. A. (1991). Effectiveness of computer-based
instruction: An updated analysis. Computers in Human Behavior, 7, 75–
94.

Kulik, J. A., & Fletcher, J. D. (2015). Effectiveness of intelligent tutoring
systems a meta-analytic review. Review of Educational Research, 86(1),
42-78.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005, June). A study of the
difficulties of novice programmers. SIGCSE Bull, 37(3), 14-18

Read, B., Archer, L., & Leathwood, C. (2003). Challenging cultures? Student
conceptions of ‘Belonging’ and ‘Isolation’ at a post-1992
university. Studies in higher education, 28(3), 261-277.

Sykes, E. R., & Franek, F. (2003, June). A prototype for an intelligent tutoring
system for students learning to program in Java (TM). In Proceedings of
the IASTED International Conference on Computers and Advanced
Technology in Education (pp. 78-83).

Solent University. (2015). Building an excellent university. Available from:
https://goo.gl/FUmREe.

Thomas, L., & Quinn, J. (2006). First generation entry into higher education.
McGraw-Hill Education (UK).

TIOBE. (2017, April). TOBIE Index for April 2017. Retrieved March 24,
2017 from https://www.tiobe.com/tiobe-index/

Weragama, D., & Reye, J. (2013, July). The PHP intelligent tutoring system.
In International Conference on Artificial Intelligence in Education (pp.
583-586). Berlin & Heidelberg, Germany: Springer.

Winslow, L. (1996). Programming pedagogy– A psychological overview.
SIGCSE Bull, ACM 28(3), 17–22.

Vanlehn, K. (2011). The relative effectiveness of human tutoring, intelligent
tutoring systems, and other tutoring systems, Educational Psychologist,
46(4), 197–221.

Author Details
Joe Appleton
Joe.appleton@solent.ac.uk

