Readings in Technology and Education: Proceedings of ICICTE 2009 742

TEACHING CONCEPTS IN MICROCONTROLLER
EDUCATION: CISC VS RICS ASSEMLBY-LEVEL
PROGRAMMING

Dimosthenis E. Bolanakis
Department of Communications, Informatics and Management
Epirus Educational Institute of Technology
Greece

Konstantinos T. Kotsis
Department of Primary Education
University of loannina
Greece

Theodore Laopoulos
Department of Physics
Aristotle University of Thessaloniki
Greece

Abstract
This paper explores the teaching concepts in Reduced Instruction Set Computers and Complex
Instruction Set Computers with reference to an assembly-level programming for small
microcontroller units (MCUs). The objective of the proposed communication is to instill the
confidence in the instructor regarding the selection of an effective MCU, appropriate for other
than electrical/electronic engineering students.

Introduction

Microcontrollers are regularly addressed to students of the electrical/electronic
engineering curriculum, but often migrate in allied disciplines so as to serve
particular monitoring/control applications. Previous literature related to the
important role of microcontrollers in solving engineering problems and
subsequently, to the need of addressing a microcontroller-based course in various
disciplines of engineering education, such as chemical engineering (Lodge, 2006),
biological and agricultural engineering (Hamrita et al., 2002), and mechanical
engineering (Culbreth, 2001; Giurgiutiu et al., 2004). Our lines of research are
focused on the migration of microcontrollers’ technology to students with software
engineering orientation. Following an extensive educational research (Bolanakis et
al., 2007a; Bolanakis et al., 2007b; Bolanakis et al., 2007c; Bolanakis et al., 2008a;
Bolanakis et al., 2008b), an integrated microcontroller-based tutoring system is
presently experienced at the Department of Communications, Informatics and
Management, Arta, Greece.

Readings in Technology and Education: Proceedings of ICICTE 2009 743

Due to the fact that Microcontroller Units (MCUs) have become a popular
teaching tool in various levels of engineering education, our recent propositions
relied on an interdisciplinary methodology for bridging the gap between low-level
and higher-level programming using assembly language learning for small
microcontrollers (Bolanakis et al., 2008b). The methodology exploits the fact that
freshman engineering students are regularly exposed to an introductory course on
high-level programming and draws their attention to the parallelism between the
assembly-level and higher-level programming topics. While this strategy acquires
the composition of the fundamental high-level programming possibilities at the
assembly-level using a Complex Instruction Set Computers (CISC) MCU, it is
designed with a systematic attention so as it could be easily revised to any
machine-depended language, using either CISC or Reduced Instruction Set
Computer (RISC) MCUs. Following this particular communication, the present
paper clarifies the entailed risk in addressing RISC MCUs to non electrical/
electronic engineering students. The goal of the present communication is to
promote the distinguishing characteristics in the teaching of CISC and RICS
assembly-level programming so as to instill the confidence in the instructor
regarding the selection of an effective MCU, appropriate for other than
electrical/electronic engineering students.

Criterion and Justification

Microcontroller designers are challenged to choose between two giant
architectures: i.e. RISC and CISC processor units. The significant characteristic of
RICS architectures, i.e. the use of simple instructions that can be executed within
one clock cycle, provides large benefits in speed and minimization of the
complexity measurements of algorithmic devices (El-Aawar, 2006). Accordingly,
RISC architectures have become very popular tools for engineers and technicians.
Alternatively, the significant characteristic of CISC architectures is related to the
benefit of completing a task in as few lines of assembly code as possible. The
question posed is which architecture is appropriate for educating engineering
students?

An anticipated answer is that since assembly-level programming is regularly
addressed for achieving the optimal performance of a low-level system
implementation, students should be exposed to a RISC-based assembly language
course. However, introducing students to the low-level (unstructured)
programming techniques along with a reduced Instruction Set Architecture (ISA)
entails the risk of causing confusion on their perception, especially when
microcontrollers’ technology is addressed to engineering students with insufficient
background on hardware design issues (Bolanakis et al., 2007a). It is worth noting
that, it is more important to provide engineering students with long-lasting

Readings in Technology and Education: Proceedings of ICICTE 2009 744

knowledge rather than one that is in line with current technological trends and
might be obsolete in a few years (Hue, 2003). In consideration of an efficient
microcontroller education, students should be provided with the opportunity of
switching between different MCUs (Bolanakis et al., 2008b). In the remainder of
the paper we reveal barriers to understanding microcontroller education, with
reference to RISC-based versus CISC-based assembly-level programming that
clearly defines the benefits of adopting a CISC processor unit in microcontroller
education.

CISC vs RISC Assembly-level Programming

One of the main objectives of the assembly language course is to provide the
learner a deeper insight into the inner mechanisms of a processor unit. However,
assembly language is not considered to be a friendly teaching tool (Buckner, 2006)
and therefore, the need to provide to students a clear linkage between high-level
and low-level programming is often posed in the literature (Bolanakis et al.,
2008b; Freudental et al., 2008; Larson & Kim, 2008). The example presented here
compares the implementation of C language paradigm in RISC-like and CISC-like
assembly language, and reveals students’ reflections on their learning processes
with reference to these kinds of architecture. The example focuses on program
flow-of-control and refers to the microcontrollers M6EHC908GP32 (CISC
processor unit) and PIC16F84A (RISC processor unit).

Flow-of-control

One of the most important chapters in sequential programming (either high-level
or low-level) is the alteration of the regular execution of a program. Students are
primarily taught how to provide a choice of action within programs. Flow-of-
control statements in high-level programming use a test expression that regularly
admits relational operators. According to the results of the evaluated expression,
the body of the statement is either executed or aborted. On the other hand, low-
level actions in assembly language evaluate flags of a status register embedded in
the central processing unit (CPU) so as to determine a conditional branch to an
effective address. Due to the necessary actions related to the CPU manipulation
(which are regularly missing in high-level programming) students are exposed to
an onslaught of new information early in their assembly language education.

Readings in Technology and Education: Proceedings of ICICTE 2009 745

Table 1: Relational Operators and CISC Assembly Instructions

Relational operators Mnemonics

< Less than BLO Branch if lower

<= Less than or equal to BLS Branch if lower or same
> Greater than BHI Branch if higher

>= QGreater than or equal to BHS Branch if higher or same
== Equal to BEQ Branch if equal

1= Not equal to BNE Branch if not equal

CISC microcontrollers employ a set of assembly language instructions
(mnemonics) that could be easily associated with relational operators. Compared
to the ISA of a RISC MCU, this option provides the benefit of minimizing
information during the initial learning stages for students. While these mnemonics
evaluate the CPU status (flag) register, their description permits omission of this
particular information and thus, facilitates the passage from a higher to a lower
level of programming. In addition, CISC microcontrollers encompass mnemonics
that perform subtraction between two registers without changing their content.
Those mnemonics provide significant advantages during the assembly code
development process. Tables 1 and 2 present relational-like and compare
mnemonics respectively, which are referred to the microcontroller
MC68HC908GP32. In the following we give an if statement example that is
addressed to reveal the benefits in CISC-like assembly-level programming with
reference to students’ reflections on their learning processes.

Table 2: Compare Instructions in CISC Assembly Language

Compare mnemonics
CMPA Compare A (accumulator) with memory

CMPX Compare X (index low) with memory

CBEQA Compare accumulator with immediate and branch if equal

CBEQX Compare X (index low) with immediate and branch if equal

Readings in Technology and Education: Proceedings of ICICTE 2009 746

IF example: Figure 1 a) presents an if example in C, while Figure 1 b) and c)
presents the equivalent code in MC68HC908GP32 and PIC16F84A assembly
language respectively.

Figure 1: C and Assembly Code (if example)

1 if (x>y & x>3) if movE x,0 W <= x

1
2 subwf y,0 W <= w-y (i.e. w <= x-y)
3 btfsc status,C ;test carry flag and skip next
;instruction if C=0 (i.e. x>y)
4 goto if_end ;skip if body if x<y
2 {

3 “statements” 5 btfsc status,Z ;test zero flag and skip next
4 } ;instruction if Z=0 (i.e. x!=y)
a) 6 goto if_end ;skip if body if x==y

7 movf x,0 W <= X
8 subwf 3h,0 jw <= w-3 (i.e w <= x-3)
1 if lda x ja <= x 9 btfsc status,C ;test carry flag and skip next
2 cmpa y ja~y (i.e x-y) ;instruction if C=0 (i.e. x>3)
3 bls if end ;skip if body if x<=y 10 goto if end ;skip if body if x<3
4 cmpa #3 ;a-3 (i.e x-3) 11 btfsc status,Z ;test zero flag and skip next
5 bls if_end ;skip if body if x<=3 ;instruction if 2Z=0 (i.e. X!=3)
12 goto if end ;skip if body if x==3
6 if body ‘“statements” - -
13 if body “statements”
7 if_end

b) 14 if end)

Regarding the CISC-based assembly code in Figure 1 b), students are primarily
introduced to the relational-like mnemonics (Table 1) and thereafter, it is
explained to them that test expressions in the assembly-level are formed using a
combination of compare (Table 2) and relational-like mnemonics. Compare
mnemonics are used to prepare a condition, while the subsequent relational-like
mnemonics are used to verify the condition. If the evaluated condition is found to
be true, relational-like mnemonics alter the program flow to the memory location
defined by a descriptive label. Otherwise, program flow continues to the
subsequent instruction in the assembly code. Due to the fact that compare
instructions are performed through the general purpose registers of the CPU, 1.e.
accumulator (A) and index register low (X), the content of the tested variable
should be previously assigned to either A or X register. Another point that should
be taken into account is the selection of the relational-like mnemonic that is
associated to the opposite high-level operator, so as to ease the assembly code
development process. Specifically, it is more convenient to evaluate the false
condition and abort the execution of the flow-of-control statement rather than
evaluate the true condition and fetch the body of the clause, in case the evaluated
condition is verified. Accordingly, lines 1-3 in Figure 1 b) evaluate the condition x
<y end abort the execution of the statement in case it is found to be true, while
lines 4-5 perform the same action in case the condition x < 3 is confirmed. At this
point it is worth noting that, while compare mnemonics affect the flag register and
relational-like instructions check the status of the register bits, that type of
information could be easily omitted during the early lessons of assembly language
learning. Therefore, students can focus on the necessary actions for switching from
high-level statements to assembly-level techniques.

Readings in Technology and Education: Proceedings of ICICTE 2009 747

Contrary to CISC-like assembly language programming, this kind of information
is necessary in RISC-like programming. Considering the RISC-based assembly
code in Figure 1b), students should be primarily introduced to the CPU flag
register and thereafter, learn which particular mnemonics have an effect on flag
register and in which register bits. In addition, during the code development
process, the students deal with the situation of thinking how the result of an
arithmetic operation affects the flag register and subsequently the program flow.
The lack of compare mnemonics present students with the responsibility of
reassigning general purpose registers to the content of the tested variable before
every arithmetic operation. Accordingly, line 1 assigns variable x to the CPU
general purpose register (w), line 2 subtracts y variable from w and line 3 tests
carry flag (C) in status register. If C =1 (i.e. x <y) the subsequent instruction (line
4) is executed and thus, the body of the if clause is aborted. Otherwise, line 5
evaluates the zero flag (Z) and proceeds to the same action incase Z =1 (i.e. x =
y). Thus, if Z =1 line 6 is executed and the body of the if clause is aborted. The
same action is repeated in lines 7—12 so as to determine the execution of the if’
body in case x>3.

Assessment

In an effort to assess the value of the proposed CISC-based pedagogy, an
anonymous questionnaire was administered to 39 students at the Department of
Communications, Informatics and Management, Epirus Educational Institute of
Technology, Arta, Greece. Table 3 summarizes the results of the assessment
survey. The first two questions explore the value of the proposed methodology in
obtaining the educational benefits of the assembly language programming course,
that is, the understanding of computer architecture and the improvement of high-
level programming skills. The third question examines the value of the proposed
pedagogy in facilitating learning.

Positive results of the first two questions find the students agree with the
effectiveness of the proposed methodology to their education. The expected higher
score in the first question confirms that the assembly language learning helps more
in understanding how a computer machine works and less in improving high-level
programming skills. The high score of the third question proves that the proposed
CISC-based approach facilitates students’ learning. The fact that none of the
students believes that the current method helped in the conception of the low-level
programming issues, shortly or at all, highlights the educational benefits of a
CISC-based approach on students’ perception.

Readings in Technology and Education: Proceedings of ICICTE 2009 748

Table 3: Assessment Survey

No Questions Very Much Enough Shortly Atall average
much

()]
@ (©)] @ 1)

1 Do you believe that the code
development in low-level
languages supports the
understanding of the internal 3 14 17 4 1 3,36
structure and the way a computer
machine works?

2 Do you believe that the
understanding of the code
construction at the machine level
can prove your skills on high-level
programming?

3 Do you believe that the assembly
language tutoring using structured
peudocode of a familiar high-level
language as an interim step 14 16 9 0 0 4,13
facilitates the conception of the
low-level programming issues?

Discussion and Concluding Remarks

The lack of structures in the assembly language requires a significant effort for
transcending the limits between high-level and low-level programming. Therefore,
our recent propositions relied on an interdisciplinary methodology for bridging the
gap between low-level and higher-level programming using assembly language
learning for small microcontrollers (Bolanakis et al., 2008b), while the present
paper clarifies the reason for adopting a CISC CPU in microcontroller education.
Because CISC microcontrollers employ a set of mnemonics that could be easily
associated with relational operators, as well as compare mnemonics that create
results on the fly, their usage permits minimization of information during the
initial learning stages. This provides students with the advantage of focusing on
low-level programming techniques for converting high-level programming
constructs at the machine level; rather than focusing on too much technical detail
regarding the effect of particular mnemonics on the CPU flag register. It is our
belief the latter information should be provided to the students after their
familiarization with the low-level programming techniques; otherwise students
might face confusion and disorientation from the main purpose of the course.
Following the proposed educational sequence, students could easily exploit low-
level programming techniques in the subsequent advanced lessons of interrupts,
timers, serial communication interfaces, etc. Due to the fact that RISC
architectures have become very popular tools for engineers and technicians, the
issues discussed within this paper reveal the entailed risk in addressing these

Readings in Technology and Education: Proceedings of ICICTE 2009 749

architectures to students with insufficient background on topics related to
hardware domain. The purpose of this communication is to instill the confidence
in the instructors regarding the selection of an effective MCU, appropriate for
other than electrical/electronic engineering students.

References
Bolanakis, D. E., Evangelakis, G. A., Glavas, E., & Kotsis, K. T. (2008a). Teaching the
addressing modes of the M68HCO08 CPU by means of a practicable lesson. The 11th
IASTED International Conference on Computers and Advance Technology in
Education (pp. 446—450). Crete, Greece.

Bolanakis, D. E., Evangelakis, G. A., Glavas, E., & Kotsis, K. T. (2008b). A teaching
approach for bridging the gap between low-level and high-level programming using
assembly language learning for small microcontrollers. Computer Applications in
Engineering Education, published online on April, 16, 2009 (early view in advance
of print).

Bolanakis, D. E., Glavas, E, & Evangelakis, G. A. (2007a). An integrated
microcontroller-based tutoring system for computer architecture laboratory course.
International Journal of Engineering Education, 26(4), 785-798.

Bolanakis, D. E., Glavas, E, & Evangelakis, G. A. (2007b). Levin’s approach for
microcontrollers tutoring. 6th ASEE Global Colloquium on Engineering Education
(pp. 1-11). Istanbul, Turkey.

Bolanakis, D. E., Glavas, E, & Evangelakis, G. A. (2007c). A multidisciplinary
educational board system for microcontrollers: Considerations in design for
technically accurate custom-made platforms. The Ist International Symposium on
Information Technologies and Applications in Education (pp. 391-395). Kunming,
P. R. China.

Buckner, K. (2006). A non traditional approach to an assembly language course. Journal
of Computing Sciences in Colleagues, 22(1), 179-186.

Culbreth, W. (2001). Meeting the needs of industry: Development of a microcontroller
course for mechanical engineers. ASEE Annual Conference & Exposition (pp. 1-9).
Albuquerque, New Mexico.

El-Aawar, H. (2006). CISC vs RISC hardware and programming complexity measures of
addressing modes. International Conference on Perspective Technologies and
Methods in MEMS Design (MEMSTECH). Lviv-Polyana, Ukraine.

Freudental, E. A., Carter, B. A., Kautz, F. F., & Ogrey A. N. (2008). Work in progress—
combined introduction of C and assembly with a focus on reduction of high-level
language constructs. ASEE/IEEE Frontiers in Education Conference (pp. S2H/3—
S2H/4). Saratoga Springs, NY.

Giurgiutiu, V., Lyons, J., & Rocheleau D. (2004). Mechatronics/microcontrollers
education for mechanical engineering students at the University of South Carolina.
ASEE Annual Conference & Exposition (pp. 1-10). Salt Lake City, Utah.

Readings in Technology and Education: Proceedings of ICICTE 2009 750

Hamrita, T. K. (2002). Micro-controllers in the biological and agricultural engineering
curriculum at the University of Georgia. ASEE Annual Conference & Exposition (pp.
1-6). Montreal, Quebec, Canada.

Hu, S. C. (2003). A wholesome ECE education. I[EEE Transactions on Education, 46(4),
444-451.

Larson, E., & Kim, M. O. (2008). A simple but realistic assembly language for a course
in computer organization. ASEE/IEEE Frontiers in Education Conference (pp.
S2H/3-S2H/4). Saratoga Springs, NY.

Lodge, K. (2006). The programming of a micro-controller as the laboratory component in
process control for undergraduates in chemical engineering. ASEE Annual
Conference & Exposition (pp. 1-12). Chicago, Illinois.

